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Preface

Modern Radiology is a free educational resource for
radiology published online by the European Society of
Radiology (ESR). The title of this second, rebranded ver-
sion reflects the novel didactic concept of the ESR eBook
with its unique blend of text, images, and schematics in the
form of succinct pages, supplemented by clinical imaging
cases, Q&A sections and hyperlinks allowing to switch
quickly between the different sections of organ-based and
more technical chapters, summaries and references.

Its chapters are based on the contributions of over 100 rec-
ognised European experts, referring to both general tech-
nical and organ-based clinical imaging topics. The new
graphical look showing Asklepios with fashionable glasses,
symbolises the combination of classical medical teaching
with contemporary style education.

Although the initial version of the ESR eBook was cre-
ated to provide basic knowledge for medical students
and teachers of undergraduate courses, it has gradually
expanded its scope to include more advanced knowledge
for readers who wish to ‘dig deeper. As a result, Modern

Radliology covers also topics of the postgraduate levels
of the European Training Curriculum for Radiology, thus
addressing postgraduate educational needs of residents.
In addition, it reflects feedback from medical professionals
worldwide who wish to update their knowledge in specific
areas of medical imaging and who have already appreci-
ated the depth and clarity of the ESR eBook across the
basic and more advanced educational levels.

I would like to express my heartfelt thanks to all authors who
contributed their time and expertise to this voluntary, non-
profit endeavour as well as Carlo Catalano, Andrea Laghi
and Andras Palké, who had the initial idea to create an ESR
eBook, and - finally - to the ESR Office for their technical
and administrative support.

Modern Radiology embodies a collaborative spirit and
unwavering commitment to this fascinating medical disci-
pline whichis indispensable for modern patient care. | hope
that this educational tool may encourage curiosity and crit-
ical thinking, contributing to the appreciation of the art and
science of radiology across Europe and beyond.

Minerva Becker, Editor
Professor of Radiology, University of Geneva, Switzerland
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<=> CORE KNOWLEDGE

/- Why Should We Learn About Al?

/ Artificial intelligence (Al) is a
rapidly growing field, influenc-
ing every aspect of our lives,
including the way we practice
medicine. Healthcare work-
ers should keep up with the
pace of digital development
to advance the field.

/- While the volume and com-
plexity of imaging is sky-
rocketing, there is arise in
workforce shortages and
strain on radiologists. As a
result, quality decreases and
reporting backlogs are grow-
ing. Al may increase both the
speed and quality of report-
ing, while boosting physicians
job satisfaction.

/ The use of Al in healthcare

poses potential risks, such
as large number of errors
or additional unnecessary
costs. Therefore, we should
learn more about Al in order
to deploy Al tools safely and
effectively in medicine.

In the following section we
will learn more about the
applications of Al in radiology,
but first let's look at the brief
history of and fundamental
information about Al.

Forecast Shortfall of Clinlcial Radiolgy
Consultants in UK 2020-2025

REIRKRBHFESE 2020-2025 FEFWERO

B Clinical Radiology Consultants
GRS F EE
Shortfall

BoAR 44 %

33 % 3,613

2020 2025

<> REFERENCE

Adapted from Clinical radiology UK
workforce census 2020 report

https://www.rcr.ac.uk/publication/clinical-
radiology-uk-workforce-census-2020-report
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/ Brief History of Al in Radiology

/ Ada Lovelace conceptualised the first programming
in 1842, marking the birth of computer science.

/- Krizhevsky et al., won the ImageNet challenge in
2012 with AlexNet, a convolutional neural network,

and the field of Deep Learning has skyrocketed.
/ In1895, William Conrad Roentgen

discovered the first X-ray, leading to the / First Al-based algorithm is cleared by FDA in
emergence of radiology as a specialty. 2017 and officially entered to clinical setting.

1914-18
X-rays used in 1992
1895 WWI field First research on ) 2017
Discovery of hospitals 1971 1980-90s Al'in radiology First FDA approval of
X-rays 1958 Prototype CT CT helical and (mammography) Al-based algorithm
1895 19141918 & Ultrasound in scarlzer 1973-9 multi-slice (Arterys)
N . WwWI obstetrics MRI developed scanning 1992 201
X §445 . ., 7
2 X 5 BB 1971 \ ¥ N
X §¥%& 1958 R 1980 - 1990 & (LA X &iR) HMETAN
| B T 1973 -1979 & St
FERIBE i RIFE MRI SR ERS Al ERRBRE
| I fizti: 10 CT SHITERR FDA #t £ (BhR%)
Radiology WEtE
Computer Science itEHEF
1957 1963 1972 1980-90s 1997 2012 2016 2022
1942-45 The term Al Goined DARPA funds Al MYC_II\_I first clinical Development in Deep Blue Alexnet AlphaGO ChatGPT
Konrad Zuse first at Dartmouth at MIT decision support robotics, computer defeats Gary breakthrough defeats Lee released
rogramming language . system vision and natural Kasparoy  for Deep Learning Sedol by OpenAl
prog g language o p
1842 "Plankalkil" onierence 1963 language processing in chess atthe ILSVRC
Ada Lovelace first 1957 DARPA %8 1972 R 2016 2022
programming 1942 - 1945 £ pien MIT & Al MYCIN 1980 - 1990 F1t 1997 2012 AlphaGO OpenAl
Konrad Zuse A BMIRE BRINFF LA SRIE (Deep Blue) Alexnet HMERTE HEH
1842 KWEER
Ada Lovelace FRE— fplemini RELIHRYE HEMMEA EMERKHAN EILSVRCE  Lee Sedol ChatGPT
BETEREERES RIZES TN BRBSLE Gary Kasparov ~ SKHLT3RE
= PR “Plankalkil” = 2SJHZERY

<> REFERENCE

Adapted from Clin Transl Sci (2020) 13, 216-218; doi:10.1111/cts.12704
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/ Definitions

/ Artificial Intelligence (Al): a field within com-

puter science focused on creating solutions
capable of performing tasks that are typically
associated with human intelligence. It is a broad
term that encompasses a wide range of tech-
nologies, and even a basic rule-based model
can be considered a form of Al.

Machine Learning (ML): a subset of Al that revolves
around the creation of algorithms capable of learning
from data and making predictions. However, these
algorithms still rely on human supervision. ML is

not a new concept within the Al field. In computer
vision, traditional ML algorithms often entail image
processing and explicit feature extraction.

>|< COMPARE

/ Deep Learning (DL): a subset of ML that utilises
neural networks to learn patterns in data. Itis
considered a relatively new field within Al and
has experienced a surge in popularity in recent
years. Training a DL model usually requires large
amounts of data and computational resources
due to the complexity of neural network architec-
tures. Nowadays, that's feasible thanks to graphic
cards specialised in matrix operations.

<!> ATTENTION

Al is an umbrella term and
can be applied to many
domains in many forms.

In this chapter we focus
mainly on deep learning in
image recognition.
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>|< COMPARE

/ Artificial Neural Network (ANN):

a type of machine learning
algorithm that mimics the struc-
ture and function of the human
brain. They contain multiple
neurons organised in hierarchi-
cal layers. The layers closest to
the input layer are responsible
for processing and transform-
ing the input data to extract
relevant features, whereas

the output layer is responsible
for the final output.

Deep neural network (DNN):

a specific type of neural net-
work composed of multiple
intermediate layers (i.e., hidden
layers). They can be used to
train powerful models based on
large amounts of data.

x1

x2

x3

x4

x5

X6

Input Layer 6 neurons

BNE

y

PrSON A

2 B ).
)

Output Layer
HWHE

O
AN, A f;ﬁ;)’:‘é"//’
NOAT ) T B
\ i

50 neurons
6 M#EZTT 50 MELZTT
100 neurons 200 neurons
100 N#£27T 500 neurons 200 NHEETT
500 MEEZTT

Hidden Layers
of neurons

iR
Adapted from M. Bahi and M. Batouche,
"Deep Learning for Ligand-Based Virtual
Screening in Drug Discovery," doi:
10.1109/PAIS.2018.8598488
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Screening in Drug Discovery," doi:
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Radiomics: refers to
extracting quantifiable

and minable features from
medical images. Itis a rapidly
growing research field and
mostly applied in the field

of oncological imaging.

Currently, radiomics is still
largely aresearch area,
but efforts are being made
to translate these research
findings into the clinic.

Depending on whether one
uses hand-crafted or deep
learning approaches, the
radiomics workflow may
include clinical and imag-
ing data curation, image
pre-processing, image
segmentation, feature
extraction, model develop-
ment, and model validation.

Hand-crafted Radiomics

| AT ARASEY
« Intensity features ; by
« Shape features
ml, Toxture foatures P AaR
« Higher-order Not Tumour
features E‘FHEF@
Input: ROI Feature extraction Modelling Output
WA ROI FHIERREY et i

Deep Learning Radiomics
REFITGAER

Not Tumour

3EfhE

Automated feature extraction + Modeling Output

B ENHEIREN + 218 i

Input: unsegmented
image or image patch
BN RORIRBK
AW

Courtesy of Tugba Akinci D’Antonoli
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/ Supervised Learning

Supervised learning is a ML paradigm that uses human-la-
belled training data. Then, the model predicts (this is

called ‘classification’) outcomes on a new, unlabelled

data set. Itis the most commonly used technique.

Labels can be for example a region of interest (ROI) that points to
a malignant breast tumour (see image below), a bounding box that
indicates a focal lesion, or text-based label such as “fracture”.

b T Benign

ol
PE
NE S

i L
Al Sl

': . ®
‘ - 1 . "i'. -
B ] Malignant 1'. 1
1r EERE | . 3
Input Data labelling Classification Output
DN HiEiTE baE i

Created with BioRender.com
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Common supervised
methods:

/

/

Regression - estimates
relationships between
variables.

Decision tree algorithms, DTA
(e.g., random forest) » DTA

are used for classification &
regression tasks; they have a
hierarchical tree structure with
a root node, branches, internal
nodes and leaf nodes.

Support Vector Machine
(SVM) - are used for classifi-
cation & regression tasks; they
are especially useful to classify
data into 2 groups.
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labelling through clustering L. e Introduction R /| EEERLEAARRITIRE, AERERIEEN L TR
i ! — 1 it
techniques such as k-means. . - & A Fundamentals of Al M
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/" Unsupervised learning is 4 ®
L - ZIDER
typically used for large sets . B - e e Take-Home Messages s
of unstructured data, e.g., in K N Malignant References and BE
discovering new biomarkers. 3 4 ey : Further Reading . EREEM
/" In medical imaging, a InAput CIaSSifiC’ation Olitput Test Your Knowledge SR
common example is I\ PaES i
Generative Adversarial
Network (GAN), used to make
synthetic (=fake) images.
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CHAPTER OUTLINE: BERAN:
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on rewards and punishments. An agent interacts with ance between reward and punishment with trial and Introduction @ B3R E, HEINITHEURAUKIARE,
the environment by sensing its state and learning to errors to favour the actions that will yield the greatest
perform actions to maximise long-term rewards. benefit. Fundamentals of Al Al S BT XA E, BEEAN AR RRPERRETE, MMt
/ Reinforcement Learning / BEs) FERAMEIITN.
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Future Aspects RRELE
Take-Home Messages ZLER
state S, reward R, ?ctlon A References and BT
RES, TEh R, ohE A, Further Reading RRSEE
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Adapted from the image by Shweta Bhatt. Adapted from the image by Shweta Bhatt.
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Deep Learning Applications in Medical Imaging

Medical imaging has been one of the main areas of interest when it comes to
developing deep learning models for medical applications. Many examples can
be found on algorithms developed for different imaging modalities (MR, CT, X-ray,
ultrasound). On the next few pages, you will find the types of tasks where deep
learning has been used, along with some examples of models:

Classification: train a model that is able to categorise images.

Examples:

Binary classification: Normal vs abnormal chest
X-ray without specification of a pathology.

Anatomical planes (multi-class) classification:
axial vs coronal vs sagittal.

Positive for a specific disease vs negative
(e.g., classification of brain MRs in positive or
negative for Alzheimer’s Disease).
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Detection: the goal of these algorithms is to identify anatomical or pathological ng] | Q:' Efgfrﬁiéﬁ Ol XEEEAR B AT R IR B &R RE 5%
. . . Jhy « —9
‘'objects’ within an image. adiology B,
Often the detected object can be Object detection CHAPTER OUTHINE: M EBEESAFE (RET) FRERNET.
hlghllghted with the use of bounding BARE Introduction i
boxeS (See image)' Fundamentals of Al Al Et fugn:
Advanced Topics / X HETRFEEFAILIARE S
about Al Al #HEE

Examples include:

/ Deep Learning

/ REFIEEF

CT 3R BIfhEE T

A . o
/ Landmark detection for spinal surgery ﬁ;’; g;":'ons in Medical PRFRINR CT s ELEaaN
planning on X-rays
Future Aspects I / CT 3R R 10
/- Lung nodule detection on CT scans
. . - ‘ DER
/' Kidney stone detection on CT scans Take-Home Messages . Em
n Metastases  [] Aorta [ ] Stomach Spleen =
/ Liver lesion detection on CT scans w5 F Rk B o] References and S
Further Reading HRER
Cheng PM. Published Online: Cheng PM. Published Online:
September 01, 2021 September 01, 2021
https://doi.org/10.1148/rg.2021200210 https:/doi.org/10.1148/rg.2021200210
Shared under a CC BY 4.0 license 2 O Shared under a CC BY 4.0 license
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Segmentation: task of dividing the pixels of an image into multiple regions or
segments, where each segment corresponds to a particular object or class (e.g., an

organ or pathology).

In general, this is the first step facilitating
classification or quantification (e.g.,
measurement) as a next step.

This type of application is one of the
popular uses of DL in medical imaging.

Examples:

/ Prostate segmentation on MR

/ Liver segmentation on CT

/ Brain tumour segmentation on MR

/ Cardiac segmentation on CTA

/- Pulmonary tumour segmentation on CT

/ Stroke segmentation on CT/MR

[] Metastasis1  [[] Metastasis2 [[l] Metastasis3 [Jl] Metastasis 4
51 w52 #53 %54

<o> REFERENCE

Cheng PM. Published Online:
September 01, 2021

https://doi.org/10.1148/rg.2021200210
Shared under a CC BY 4.0 license
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Image enhancement: deep learning models can be trained to perform tasks that

improve image quality (or maintain image quality with lower dose) on medical images.

Applications include

Denoising: DL algorithms can learn to distin-
guish noise from the underlying signal. Noise
can then be removed, while preserving the
most important imaging features.

Super-resolution: DL models can learn to increase
the spatial resolution (i.e., create high-resolution
images from low-resolution images).

Artifact removal: removal of artifacts that
impact image quality (such as motion arti-
facts, beam hardening).

Virtual contrast enhanced scans: DL models
can be trained to simulate contrast-enhanced
images based on a non-contrast study.
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Non-interpretive use cases

Use cases or applications that do not have diagnostic or prognostic primary
outcomes, but facilitate the digital radiological workflow, from patient scheduling
to communication of results (see next page for examples). These applications are
relatively novel and mostly still under development, but they hold great potential.

Some common examples:

Scheduling support: can help with workflow
optimisation, by automating the process of sched-
uling studies and making sure that the workload

is adequate for the department.

Worklist prioritisation: some machine learn-
ing models are built to identify urgent studies
that require prompt interpretation by a radiol-
ogist. This way, we can ensure that high pri-

ority studies are reviewed first.
Automation of radiology protocols: based

upon the available clinical information, Al can
help identify the optimal image acquisition
protocol, e.g., if an abdominal CT should be
acquired with or without IV contrast.

Hanging protocols: some Al tools can help
determining the layout by which radiology
images are displayed according to the specific
clinical scenario / study protocol.
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Vendors and clinicians
have had a “tunnel
vision” towards inter-
pretive use cases,
while there is an array
of use cases beyond
decision-making
support (i.e., beyond
making the diagnosis).

Imaging value chain | Non-interpretive use cases

Merel Huisman ESSR 2023

Upstream
Workflow

Decision-
making

>

Downstream
Reporting | Communication
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/- Algorithm Development, Deployment,
and Evaluation

Use Case
Definition >

/ Define the goal
of the algorithm
(i.e., the clinical
condition to be
targeted by the
application)

/ Define the inclu-
sion and exclusion
criteria associated
with the clinical
condition

/ ldentify the
data elements
required for model
development

Dataset
Preparation

/ Collect data that
is representative
of the clinical
condition

/ Label/ annotate
the collected data
(this is the ground
truth that will be
used to train and
test the model)

/ Split the dataset
into training, vali-
dation and testing
sets

>

Model
Training

/ Evaluate what
type of data
preprocessing will
be required

/ Choose the right
model architecture
approach for the
task defined in the
previous steps

/ Use the training
and validation
sets to evaluate
performance of
models trained
with different
approaches

>

Internal
Validation >

/ Select the
model with the
best performance
on the validation
set

/ Evaluate the
model perfor-
mance on the
independent (i.e.,
holdout) test set

/ This perfor-
mance will be an
approximation of
the generalisabil-
ity of the model
(i.e., how well the
model would
performin another
dataset)

External >
Validation

/ Evaluate model
performance

on external data

- (e.g., data from

other healthcare
institutions)

/ Evaluates model
generalisability
and reproducibil-
ity (i.e., usefulness
in varying settings
/ populations)

/ Helps to identify
model bias (e.g.,
poor subgroup
performance)

Clinical
Deployment

/ Models are
implemented in
the clinical work-
flow, usually after
apilot

/ Seamless inte-
gration is not trivial
but critical

/ Regulatory
clearanceis
required (e.g.,
CE-mark)

/ Usability factors
beyond model
performance
should be con-
sidered (e.g., how
and when, speed,
human-machine
interaction)

>

Post-market
Surveillance

/ Model output
should be continu-
ously monitored to
detect perfor-
mance dropsin
case of changing
clinical parameters
(called data set
shift)

/ Adverse events
related to model
use should be
reported

/ User feedback
should be
collected

/ Model updates
canbeimple-
mented to address
any issues that
may be identified
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Algorithmic performance is constantly evaluated throughout model training, and
then final performance is assessed on the test set, and later on external data during
external validation.

Performance should always be evaluated using multiple performance metrics to get a comprehensive understanding
of its strengths and weaknesses. The choice depends on the type of problem, disease prevalence and clinical context.

Common performance metrics in ML:

Dice similarity coefficient: a pixel-based over- Accuracy™*: proportion of correct predictions
lap measure between predicted and true out of all predictions (%correct), intuitive but
areas in segmentation tasks, ranging from O can overestimate performance

(no overlap) to 1 (perfect overlap)
F1-score*: metric for confidently predicting and

Mean squared error (MSE) / Mean abso- not missing disease in a low prevalence setting,
lute error (MAE): assesses the qual- preferred over accuracy in rare diseases

ity of a regression model
Area under the ROC curve (AUC-ROC): a graphical

Precision (=positive predictive value)*: pro- summary statistic for model discrimination plotted
portion of true positives out of all positive pre- as the true positive rate against the false positive
dictions, depends on prevalence rate at multiple classification thresholds

Recall (=sensitivity)*: proportion of true
positives out of all actual positive samples,
independent on prevalence *Derived from confusion matrix (see next page)
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The confusion matrix is critical to the model performance evaluation in classification
tasks (e.g., benign vs. malignant lesion). It provides a comprehensive summary of the
model's predictions compared to the ground truth labels (actual class).

Prediction

POSITIVE

NEGATIVE

Actual
(Ground truth)

FALSE NEGATIVE (FN)
TRUE POSITIVE (TP) |

POSITIVE . Type Il error
Hit ]
(miss)
FALSE POSITIVE (FP) TRUE NEGATIVE (TN)
NEGATIVE Type l error Correct
(false alarm) rejection

Based on the confusion matrix, multiple per-
formance metrics can be derived, including:

/

/

Sensitivity: TP / (TP + FN). Measures the model's
ability to correctly identify positive cases (abnor-
malities) from all the actual positive cases

Specificity: TN / (TN + FP). Measures the model's
ability to correctly identify negative cases (normal
cases) from all the actual negative cases
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Al in clinical trials: Alin Al EIR5TF IRk IE R Al RZF:
Radiology FREIRZ A
[ i i ili i / [z S5 I JAl TR, AFEERIT=RIEARSIE
/- Altools that are used in the setting of centralised /- Al can support/facilitate some trial-related tasks : ﬁﬁ{i!ﬂ;‘ﬁﬁh%ﬁ:ﬁl)ﬂrﬁﬁ '\Al‘ 2 n#ﬁg - Ffﬂ?&*% &
image reading for clinical trials also require and/or image analysis, such as: patient selection EEAM: FENE. ELHERT, WANESHHLETGENSIRE N
. CEE mage anialysis, SHen 8% . CHAPTER OOTLINE: T MEDMBANEY (BERFRE. BAERRESEND
proper technical and clinical validation. Ground according to inclusion criteria, image quality o)
truth consistency and adequate population assessment from uploaded scans and evaluation Introduction 2l .
representation (including disease phenotypes, of quantitative imaging biomarkers, bringing also /Al Bl 35/ E D R R TS /B GO, Fla: EFH
scanners and acquisition protocols variability) notorious decrease of image annotation/reading Fundamentals of Al Al E NRERNBERIE. LEHBRGNREITHUNRENEREY
are equally essential in this scenario for training time and reduction of inter-reader variability. Advanced Topics RSN, ENAR2EREEGINE/RAEE, FEER
and testing of the algorithms. about Al AlERES REBER.
/ Algorithm Development, / BEFA.
Deployment, and EREMITE
Evaluation ‘
Future Aspects KRELE
Take-Home Messages ; ZOER
References and BE
Further Reading HRER
Test Your Knowledge FHIER
THREZES:
Check out for more information:
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/ Data Sharing

Development and improvement of Al is largely based on the algorithm’s learning
experience. As algorithms learn from data, a more comprehensive data access is
crucial for improved accuracy and implementation and, ultimately, for a better service

provided to healthcare.

GDPR - General Data
Protection Regulation

In May 25th 2018 GDPR came into
effect. It applies to all EU member
states and concerns process-

ing of personal data, including
(although not specifically designed
for) data concerning health.

GDPRis a binding law and
supersedes pre-existing laws.

PERSONAL DATA:

any information
relating to an
identified or
identifiable
natural person

any operation

or set of
operations which
is performed on
personal data

<!> ATTENTION

Identified or identifiable natural
person is a key concept in the
matter of data protection.

DATA CONCERNING
HEALTH:

any information
relating to an
identified or
identifiable
natural person

<> REFERENCE

- Take alook:
https://gdpr-info.eu/
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A particular setting where GDPR is of utmost importance is in Medical Devices (MD) Alin él ngrﬁﬁlﬁéﬁ EET2ERM (MD) FAMmk s, a2
development and commercialisation, specifically those implementing Al software, Radiclogy o X Al frpi2Etl, GDPR EXEE, ENIRE

where access to appropriate datasets determines its performance and conformance EHIIERRE T RIEREREE R ST RE.

CHAPTER OUTLINE: BERAN:
to the intended use.
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Technigues to mitigate data protection risks according to GDPR

/ Pseudonymisation - means the processing of /- Anonymisation - anonymous data is data
personal data in such a manner that the personal from which no connection to a specific iden-
data can no longer be attributed to a specific tifiable person can be drawn and falls out-
data subject without the use of additional infor- side applicability of the GDPR.

mation, provided that such additional information
is kept separately. Pseudonymised data quali-
fies as personal data under GDPR.

In the specific case of the health sector, where it is crucial to keep traceability,
pseudonymisation is an example of an appropriate data protection safeguard.
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Health data may be processed:

/- When the patient gives explicit and unambiguous
consent to the use of their data

/- Whenitisin the patient’s vital interest

/ For healthcare purposes

/ For public interest in the area of

public health
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Other available current applications
include scan-related automated
processes such as:

Patient positioning at the isocenter
(CT and MRI)

Identification of the region of interest (MRI)

Equipment maintenance (CT)

<> REFERENCE

To be highlighted is that simultaneous
time and costs saving, paired with
reduced radiological workload and
increased productivity and efficiency will
primarily benefit the patient, but also the
radiologist, referral physicians and the
healthcare system in general.

Ultimately, Al solutions might also
support an extension of healthcare
services coverage where there is a
shortage of practitioners.
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Some inherent risks need to be accounted for in Al applications, such as:

/- Unintended bias potentially causing
health disparities (e.g., gender, race,
socioeconomic status)

/ Performance drop in the clinical setting,
or in certain subgroups

/ Inconsistent performance of the
algorithm over time

/- Overcomplicating healthcare and adding costs
without efficiency nor quality gains

/ Lack of reimbursement (country-specific).

/ Post-market surveillance failure (mandatory
according to MDR)

It is essential to be aware of the actual clinical problems and
the appropriateness of the Al-based solutions in a particu-
lar clinical setting; see Al as a means not as an end goal.

Liability issues (a malpractice aspect

in the United States) on the final patient
outcome - who is liable? the Al developer?
The company which commercialises the
algorithm? Or the radiologist?

Cyberattacks and data leakage.

Automation bias (i.e., humans following the Al
blindly even if it is giving wrong advice)

Technical push > clinical pull (i.e.,
developing tools because it is possible,
not because it is needed)
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/ Future Aspects

/- Currently Al algorithms
in radiology are narrowly
focused, targeting a specific
imaging feature or task (called
a point solution).

NARROW Al (POINT SOLUTION)

GENERAL Al

/ Infuture, this might change

. - . . Application specific/task limited
with artificial general intelli-

Perform general (human)
intelligence tasks

gence (AGI) and eventually
Al could execute many tasks
at a human level capa-

Fixed domain models provided by
programmers

Self-learns and reasons with its
operating environment

bility with limited human

.. Learns from thousands of labelled
supervision.

examples

Learns from few examples and/or
from unstructured data

/ Inthat case the day-to-day
tasks of a radiologist might
change drastically; we

Reflective tasks with no
understanding

Full range of human cognitive
abilities

would have more time for
patient contact, complex

Knowledge does not transfer to other
domain tasks

Leverages knowledge transfer to
new domains and tasks

cases, and multi-disciplinary

team meetings. Today's Al in radiology

Future's Al in radiology?
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Large Language Models (LLM)

/- LLMs are deep neural networks trained to
generate human-level text.

/ The GPT (generative pretrained trans-
former) family of LLMs are currently on the
rise and are already being used in many
areas of medicine and radiology.

/ To date, several articles have been published using
GPT-3.5 and GPT-4 showing that LLMs can support
decision-making in mammography, write medical
articles, or pass radiology board exams.

/- There may be more to come in the near future,
and LLMs may facilitate our path to AGI.
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/ Take-Home Messages

Alis a multidisciplinary effort where computer
scientists, medical physicists, and clinical
experts collaborate in all steps of the process to
achieve clinically applicable solutions.

Machine Learning uses algorithms capable of
learning from data and making predictions, whereas
Deep Learning is a subset of ML and utilises Deep
Neural Networks to learn patterns in data.

There is a wide range of areas where Deep
Learning can be applied in radiology, including
imaging and non-imaging use cases.

Compliance with GDPR is fundamental: Data
collection should be minimised and used fairly, with
clear and legitimate purpose. Data should not be
stored longer than necessary and must be protected
with appropriate cybersecurity measures.

/ Benefits of Al implementation include
reduction of image interpretation and
processing time, optimisation of worklists
and reduction of radiation dose.

/ Risks and limitations of Al include
performance drop, liability issues,
cyberattacks and data leakage.

/ Radiologists should become familiar with
these and take advantage of this enormous
potential for better patient care.
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<=> CORE KNOWLEDGE

/ Test Your Knowledge

What is TRUE about Deep
Neural Networks?

[0 Their success is due to better hardware (graphic
cards) specialised in matrix operations

[1 Need artificial biological, highly
interconnected neurons to operate

O

Are the only form of machine learning

[0 Need the manual extraction and
coding of knowledge
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<=> CORE KNOWLEDGE

/ Test Your Knowledge

The different Machine
Learning methods are:

[1 Pre-coded and post-coded learning
[1 Bottom-up and top-down learning

[0 Supervised learning, unsupervised
learning and reinforcement learning

[0 Single-shot learning and multi-shot learning
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The different Machine
Learning methods are:

[1 Pre-coded and post-coded learning
[1 Bottom-up and top-down learning
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<=> CORE KNOWLEDGE

/ Test Your Knowledge

What is TRUE about
Data Sharing?

[1 Anonymisation allows safe data sharing and
backtracking to the patient’s original data

[0 Pseudonymous data is considered
personal data under the GDPR

[0 For healthcare purposes patient data
can be processed without consent

[0 Software does not always fall under the MDR
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Test Your Knowledge

Regarding Algorithm Evaluation, which
of followings is a suitable metric to
evaluate a segmentation task?

[0 Mean squared error
1 Precision
0 Fi1-score

[1 Dice similarity coefficient
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Regarding Algorithm Evaluation, which
of followings is a suitable metric to
evaluate a segmentation task?

[0 Mean squared error
1 Precision
0 Fi1-score

Dice similarity coefficient
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<=> CORE KNOWLEDGE

/ Test Your Knowledge

Regarding Deep Learning Applications
in Medical Imaging, splitting an image
into multiple regions, where each
region corresponds to a particular
object or class, is an example of:

0 Classification
[1 Image Enhancement
0 Detection

[0 Segmentation
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Regarding Deep Learning Applications
in Medical Imaging, splitting an image
into multiple regions, where each
region corresponds to a particular
object or class, is an example of:

0 Classification
[1 Image Enhancement
0 Detection
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